Yazarlar |
Ziya Merdan
Gazi Üniversitesi, Türkiye |
Ayşe Duran
Dumlupınar Üniversitesi, Türkiye |
Dine Atille
|
Dr. Öğr. Üyesi Ganimet MÜLAZIMOĞLU KIZILIRMAK
Ahi Evran Üniversitesi, Türkiye |
Abdullah Günen
Gazi Üniversitesi, Türkiye |
Özet |
The Ising models in seven and eight dimensions are simulated on the Creutz cellular automaton using the finite-size lattices with the linear dimension 4 {less-than or slanted equal to} L {less-than or slanted equal to} 8. Three different finite-size exponents for the order parameter near the curie point are computed to be 1.74 (3), 0.95 (2), 2.42 (5), 1.99 (19), 0.96 (1) and 2.95 (11) for d = 7 and d = 8 dimensions, respectively. The obtained results are in good agreement with the theoretical predictions, frac(7, 4), 1, frac(5, 2), 2, 1, 3 for d = 7 and 8 dimensions, respectively. The exponent in the finite-size scaling relation for the magnetic suscebtibility at the infinite-lattice critical temperature is computed to be 4.03 (9) using 4 {less-than or slanted equal to} L {less-than or slanted equal to} 8, which is in very good agreement with the theoretical prediction of 4 for d = 8 dimension. The finite-size scaling relation for the magnetic susceptibility at the infinite-lattice critical temperature is also valid for the maxima of the magnetic susceptibilities of the finite-size lattices. The finite-size scaling plots of the order parameter and the magnetic susceptibility verify the finite-size scaling relations about the infinite-lattice critical temperature. © 2005 Elsevier B.V. All rights reserved. |
Anahtar Kelimeler |
Cellular automaton | Critical exponents | Ising models |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Physica A: Statistical Mechanics and its Applications |
Dergi ISSN | 0378-4371 |
Dergi Tarandığı Indeksler | SSCI |
Makale Dili | İngilizce |
Basım Tarihi | 07-2006 |
Cilt No | 366 |
Sayı | 1 |
Sayfalar | 265 / 272 |
Doi Numarası | 10.1016/j.physa.2005.10.035 |
Makale Linki | http://linkinghub.elsevier.com/retrieve/pii/S0378437105011325 |