E-4 is a quaternionic B-2-slant helix double left right arrow H-2 - KH1 = 0" where H-2, H-1 are harmonic curvature functions and K is the principal curvature function of the curve alpha." />
Yazarlar |
İsmail Gök
Ankara Üniversitesi, Türkiye |
Osman Zeki Okuyucu
Bilecik Şeyh Edebali Üniversitesi, Türkiye |
Ferdağ KAHRAMAN AKSOYAK
Erciyes Üniversitesi, Türkiye |
Hilmi Hacısalihoğlu
|
Özet |
In this paper we give a new definition of harmonic curvature functions in terms of B-2 and we define a new kind of slant helix which we call quaternionic B-2-slant helix in 4-dimensional Euclidean space E-4 by using the new harmonic curvature functions. Also we define a vector field D which we call Darboux quaternion of the real quaternionic B-2-slant helix in 4-dimensional Euclidean space E-4 and we give a new characterization such as: "alpha : I subset of R -> E-4 is a quaternionic B-2-slant helix double left right arrow H-2 - KH1 = 0" where H-2, H-1 are harmonic curvature functions and K is the principal curvature function of the curve alpha. |
Anahtar Kelimeler |
Euclidean spaces | harmonic curvature functions | quaternion algebra | Slant helices |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | ADVANCES IN APPLIED CLIFFORD ALGEBRAS |
Dergi ISSN | 0188-7009 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Dergi Grubu | Q3 |
Makale Dili | İngilizce |
Basım Tarihi | 12-2011 |
Cilt No | 21 |
Sayı | 4 |
Sayfalar | 707 / 719 |
Doi Numarası | 10.1007/s00006-011-0284-6 |
Makale Linki | http://link.springer.com/10.1007/s00006-011-0284-6 |
Atıf Sayıları | |
WoS | 25 |
Google Scholar | 57 |