E-4 is a quaternionic B-2-slant helix double left right arrow H-2 - KH1 = 0" where H-2, H-1 are harmonic curvature functions and K is the principal curvature function of the curve alpha." />
img
On the Quaternionic B 2 Slant Helices in the Euclidean Space E 4     
Yazarlar
İsmail Gök
Ankara Üniversitesi, Türkiye
Osman Zeki Okuyucu
Bilecik Şeyh Edebali Üniversitesi, Türkiye
 Ferdağ KAHRAMAN AKSOYAK Ferdağ KAHRAMAN AKSOYAK
Erciyes Üniversitesi, Türkiye
Hilmi Hacısalihoğlu
Özet
In this paper we give a new definition of harmonic curvature functions in terms of B-2 and we define a new kind of slant helix which we call quaternionic B-2-slant helix in 4-dimensional Euclidean space E-4 by using the new harmonic curvature functions. Also we define a vector field D which we call Darboux quaternion of the real quaternionic B-2-slant helix in 4-dimensional Euclidean space E-4 and we give a new characterization such as:
"alpha : I subset of R -> E-4 is a quaternionic B-2-slant helix double left right arrow H-2 - KH1 = 0"
where H-2, H-1 are harmonic curvature functions and K is the principal curvature function of the curve alpha.
Anahtar Kelimeler
Euclidean spaces | harmonic curvature functions | quaternion algebra | Slant helices
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı ADVANCES IN APPLIED CLIFFORD ALGEBRAS
Dergi ISSN 0188-7009
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 12-2011
Cilt No 21
Sayı 4
Sayfalar 707 / 719
Doi Numarası 10.1007/s00006-011-0284-6
Makale Linki http://link.springer.com/10.1007/s00006-011-0284-6
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 25
Google Scholar 57
On the Quaternionic B 2 Slant Helices in the Euclidean Space E 4

Paylaş