Yazarlar |
Prof. Dr. Ferdağ KAHRAMAN AKSOYAK
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Özet |
In this paper, we give some characterization of quaternionic Bertrand curves whose the torsion is non-zero but bitorsion is zero in $mathbb{R}^{4}$ according to Type 2-Quaternionic Frame. One of the most important points in working on quaternionic curves is that given a curve in $mathbb{R}^{4}$, the curve in $mathbb{R}^{3}$ associated with this curve is determined individually. So, we obtain some relationships between quaternionic Bertrand curve $alpha^{(4)}$ in $mathbb{R}^{4}$ and its associated spatial quaternionic curve $alpha$ in $mathbb{R}^{3}$. Also, we support some theorems in the paper by means of an example. |
Anahtar Kelimeler |
Quaternions | quaternionic frame | Bertrand curve | Euclidean space |
Makale Türü | Özgün Makale |
Makale Alt Türü | ESCI dergilerinde yayımlanan tam makale |
Dergi Adı | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics |
Dergi ISSN | 1303-5991 |
Dergi Tarandığı Indeksler | ESCI |
Makale Dili | İngilizce |
Basım Tarihi | 02-2022 |
Cilt No | 71 |
Sayı | 2 |
Sayfalar | 395 / 406 |
Doi Numarası | 10.31801/cfsuasmas.991631 |
Atıf Sayıları | |
Google Scholar | 1 |