img
img
Regularity for generators of invariant subspaces of the Dirichlet shift    
Yazarlar (2)
Stefan Rıchter
Faruk Yılmaz
Kırşehir Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
Let D denote the classical Dirichlet space of analytic functions on the open unit disc whose derivative is square area integrable. For a set E subset of partial derivative D we write
D-E = {f is an element of D : lim(r -> 1) f(re(it)) = 0 q.e.},
where q. e. stands for "except possibly for e(it) in a set of logarithmic capacity 0 ''. We show that if E is a Carleson set, then there is a function f is an element of D-E that is also in the disc algebra and that generates DE in the sense that D-E = clos {pf : p is a polynomial}.
We also show that if phi is an element of D is an extrernal function (i.e. < p phi, phi > = p(0) for every polynomial p), then the limits of vertical bar phi(z)vertical bar exist for every e(it) is an element of partial derivative D as z approaches e(it) from within any polynornially tangential approach region. (C) 2018 Elsevier Inc. All rights reserved.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Journal of Functional Analysis
Dergi ISSN 0022-1236 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 10-2019
Cilt No 277
Sayı 7
Sayfalar 2117 / 2132
Doi Numarası 10.1016/j.jfa.2018.10.006
Makale Linki https://linkinghub.elsevier.com/retrieve/pii/S0022123618303768
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Regularity for generators of invariant subspaces of the Dirichlet shift

Paylaş