Yazarlar (2) |
![]() |
![]() Kırşehir Ahi Evran Üniversitesi, Türkiye |
Özet |
Let D denote the classical Dirichlet space of analytic functions on the open unit disc whose derivative is square area integrable. For a set E subset of partial derivative D we write D-E = {f is an element of D : lim(r -> 1) f(re(it)) = 0 q.e.}, where q. e. stands for "except possibly for e(it) in a set of logarithmic capacity 0 ''. We show that if E is a Carleson set, then there is a function f is an element of D-E that is also in the disc algebra and that generates DE in the sense that D-E = clos {pf : p is a polynomial}. We also show that if phi is an element of D is an extrernal function (i.e. < p phi, phi > = p(0) for every polynomial p), then the limits of vertical bar phi(z)vertical bar exist for every e(it) is an element of partial derivative D as z approaches e(it) from within any polynornially tangential approach region. (C) 2018 Elsevier Inc. All rights reserved. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Journal of Functional Analysis |
Dergi ISSN | 0022-1236 Wos Dergi Scopus Dergi |
Dergi Tarandığı Indeksler | SCI |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 10-2019 |
Cilt No | 277 |
Sayı | 7 |
Sayfalar | 2117 / 2132 |
Doi Numarası | 10.1016/j.jfa.2018.10.006 |
Makale Linki | https://linkinghub.elsevier.com/retrieve/pii/S0022123618303768 |