img
On The Complex Mixed Dark-Bright Wave Dıstributions To Some Conformable Nonlinear Integrable Models    
Yazarlar
Armando Cıancıo
Gülnur Yel
Uluslararası Final Üniversitesi, Türkiye
Kumar Ajay
Hacı Mehmet Başkonuş
Harran Üniversitesi, Türkiye
Doç. Dr. Esin İLHAN Doç. Dr. Esin İLHAN
Kırşehir Ahi Evran Üniversitesi, Türkiye
Özet
In this research paper, we implement the sine-Gordon expansion method to two governing models which are the (2+1)-dimensional Nizhnik-Novikov-Veselov equation and the Caudrey-Dodd-Gibbon-Sawada-Kotera equation. We use conformable derivative to transform these nonlinear partial differential models to ordinary differential equations. We find some wave solutions having trigonometric function, hyperbolic function. Under the strain conditions of these solutions obtained in this paper, various simulations are plotted.
Anahtar Kelimeler
Conformable Derivative | (2+1)-Dimensional Nizhnik-Novikov-Veselov Equation | Caudrey-Dodd-Gibbon-Sawada-Kotera Equation | Sine-Gordon Expansion Method | Wave Solutions
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY
Dergi ISSN 0218-348X
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 02-2022
Cilt No 30
Sayı 1
Sayfalar 1 / 14
Doi Numarası 10.1142/S0218348X22400187
Makale Linki http://dx.doi.org/10.1142/s0218348x22400187