img
img
An Enhanced Hybrid TLBO–ANN Framework for Accurate Photovoltaic Power Prediction Under Varying Environmental Conditions     
Yazarlar (2)
Dr. Öğr. Üyesi Salih ERMİŞ Dr. Öğr. Üyesi Salih ERMİŞ
Kırşehir Ahi Evran Üniversitesi, Türkiye
Dr. Öğr. Üyesi Oğuz TAŞDEMİR Dr. Öğr. Üyesi Oğuz TAŞDEMİR
Kırşehir Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
This study presents an enhanced hybrid TLBO--ANN model for daily photovoltaic (PV) power generation prediction. By combining the strong nonlinear modeling capacity of Artificial Neural Networks (ANN) with the robust optimization capability of the Teaching--Learning-Based Optimization (TLBO) algorithm, the proposed framework effectively improves prediction accuracy and generalization performance. The model was trained using real meteorological and power generation data and validated on a grid-connected PV power plant in Türkiye. Results indicate that the hybrid TLBO--ANN approach outperforms the conventional ANN by achieving 39.97% and 37.46% improvements on the test subset and overall dataset, respectively. The improved convergence behavior and avoidance of local minima by TLBO contribute to this enhanced accuracy. Overall, the proposed hybrid model provides a powerful and practical tool for reliable PV power forecasting, which can facilitate better grid integration, operational planning, and energy management in renewable energy systems.
Anahtar Kelimeler
hybrid TLBO-ANN model | photovoltaic power forecasting | intelligent optimization | renewable energy systems | grid integration
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Applied Sciences Switzerland
Dergi ISSN 2076-3417 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 01-2026
Cilt No 16
Sayı 1
DOI Numarası 10.3390/app16010157
Makale Linki https://doi.org/10.3390/app16010157