img
img
Day-ahead Photovoltaic Power Production Forecasting Using a Hybrid Artificial Neural Network Model Integrated with Metaheuristic Algorithms   
Yazarlar (3)
Dr. Öğr. Üyesi Oğuz TAŞDEMİR Dr. Öğr. Üyesi Oğuz TAŞDEMİR
Kırşehir Ahi Evran Üniversitesi, Türkiye
Mehmet Yeşilbudak
Nevşehir Hacı Bektaş Veli Üniversitesi, Türkiye
Erdal Irmak
Gazi Üniversitesi, Türkiye
Devamını Göster
Özet
The escalating global energy demands and the environmental repercussions of fossil fuel utilization have given rise to a marked increase in the level of interest in renewable energy sources. Solar energy, in particular, is distinguished by its abundance and minimal environmental impact. This study sets out to compare three distinct hybrid models that are designed to enhance the forecasting accuracy of daily photovoltaic power prediction: JAYA-ANN, GA-ANN and PSO-ANN. The models were developed and tested using historical data on PV power output, including air temperature, PM10 levels, and solar irradiance. The study's findings indicated that the JAYA-ANN hybrid model exhibited superior performance, with a Mean Absolute Percentage Error (MAPE) of 7.38% and a Root Mean Squared Error (RMSE) of 681.71 kW for the test subset. The JAYA-ANN model demonstrated superior performance in comparison ...
Anahtar Kelimeler
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayınlanan tam makale
Dergi Adı International Journal of Smart grid
Dergi ISSN 2602-439X Scopus Dergi
Dergi Tarandığı Indeksler SCOPUS
Makale Dili İngilizce
Basım Tarihi 12-2025
Cilt No 9
Sayı 4
Sayfalar 210 / 218
DOI Numarası 10.20508/ijsmartgrid.v9i4.550.g416
Makale Linki https://doi.org/10.20508/ijsmartgrid.v9i4.550.g416