| Yazarlar (3) |
|
Osmaniye Korkut Ata University, Türkiye |
|
Osmaniye Korkut Ata University, Türkiye |
Doç. Dr. Cihan KÜRKÇÜ
Kırşehir Ahi Evran Üniversitesi, Türkiye |
| Özet |
| The pursuit of sustainable energy solutions critically depends on the development of efficient and safe hydrogen storage technologies to enable the widespread adoption of hydrogen as a clean energy carrier. While complex metal hydrides show immense promise for high-density hydrogen storage, the discovery and optimization of novel materials remain a significant challenge. This study presents the first systematic computational investigation of a novel class of hydrogen storage materials: LiMH x (M= Sc, Ti; x= 3, 4, 5) hydrides. Crucially, these materials were generated by an innovative AI-based autoregressive large language modeling (LLM) tool, representing a cutting-edge approach to materials discovery. Employing Density Functional Theory (DFT) within the CASTEP software package, we comprehensively characterize their fundamental properties. These compounds demonstrate notable thermodynamic … |
| Anahtar Kelimeler |
| AI-driven materials discovery | Complex metal hydrides | Density functional theory | Hydrogen storage | Lithium scandium hydrides | Lithium titanium hydrides |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | International Journal of Hydrogen Energy |
| Dergi ISSN | 0360-3199 Wos Dergi Scopus Dergi |
| Dergi Tarandığı Indeksler | SCI-Expanded |
| Dergi Grubu | Q1 |
| Makale Dili | İngilizce |
| Basım Tarihi | 11-2025 |
| Cilt No | 187 |
| Sayı | 1 |
| Sayfalar | 152097 / 0 |
| Doi Numarası | 10.1016/j.ijhydene.2025.152097 |
| Makale Linki | https://doi.org/10.1016/j.ijhydene.2025.152097 |