| Yazarlar (2) |
|
Bingöl Üniversitesi, Türkiye |
Prof. Dr. İsmail Onur KIYMAZ
Kırşehir Ahi Evran Üniversitesi, Türkiye |
| Özet |
| This paper introduces a novel fractional-order model of the classical RC electrical circuit by incorporating the generalized Caputo fractional derivative of order and a fractional time constant. Using generalized Laplace and inverse Laplace transform techniques, explicit analytical solutions of the proposed model are derived. The study also conducts a comparative analysis between the new fractional RC circuit model and existing models based on classical integer-order derivatives, Caputo, Caputo–Fabrizio, and conformable fractional operators. The results demonstrate that the proposed model offers improved flexibility and accuracy in capturing the memory-dependent dynamics characteristic of real electrical systems. This work contributes to the growing field of fractional calculus applications in electrical engineering by providing a more comprehensive framework for modeling and analysis of RC circuits with non-integer order behavior. |
| Anahtar Kelimeler |
| Electrical circuits | Fractional calculus | Generalized Laplace transform | Mathematical models | Mittag-Leffler function | Wright function |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | Analog Integrated Circuits and Signal Processing |
| Dergi ISSN | 0925-1030 Wos Dergi Scopus Dergi |
| Dergi Tarandığı Indeksler | SCI-Expanded |
| Dergi Grubu | Q4 |
| Makale Dili | Türkçe |
| Basım Tarihi | 09-2025 |
| Cilt No | 125 |
| Sayı | 32 |
| Doi Numarası | 10.1007/s10470-025-02511-z |
| Makale Linki | https://doi.org/10.1007/s10470-025-02511-z |