img
img
A novel hybrid TCN-TE-ANN model for high-precision solar irradiance prediction     
Yazarlar (1)
Dr. Öğr. Üyesi Murat IŞIK Dr. Öğr. Üyesi Murat IŞIK
Kırşehir Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
Accurate prediction of solar irradiance is critical for optimizing solar energy systems, enhancing grid stability, and supporting sustainable energy transitions. While numerous studies have explored various methodologies for solar radiation prediction, challenges remain in achieving high accuracy across diverse geographic locations and temporal resolutions. This study presents a novel hybrid model combining temporal convolutional networks (TCN), Transformer encoders (TE), and artificial neural networks (ANN) to predict global horizontal irradiance (GHI) with high precision. Utilizing a comprehensive dataset from three significant U.S. solar energy sites-Desert Sunlight, Copper Mountain, and Solar Star-spanning 22 years at a 30-min temporal resolution, the proposed model demonstrated superior performance metrics, with R ranging from 0.94768 to 0.97417, root mean square error (RMSE) between 0.04776 and 0.06543 W/m, and mean absolute error (MAE) between 0.02510 and 0.03526 W/m. By leveraging TCN's temporal feature extraction, TE's attention mechanisms, and ANN's dense layer refinements, the model demonstrates significant advancements over existing methods.
Anahtar Kelimeler
Solar irradiance prediction | TCN | Hybrid model | Time-series forecasting | Solar energy
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı PeerJ Computer Science
Dergi ISSN 0015-5661
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili Türkçe
Basım Tarihi 07-2025
Cilt No 11
Doi Numarası 10.7717/peerj-cs.3026
Makale Linki https://doi.org/10.7717/peerj-cs.3026
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
A novel hybrid TCN-TE-ANN model for high-precision solar irradiance prediction

Paylaş