img
img
Real-Time Turkish Video Text Detection and Recognition    
Yazarlar (3)
Doğukan Uykun
Ankara Üniversitesi, Türkiye
Hakkı Alparslan Ilgın
Ankara Üniversitesi, Türkiye
Dr. Öğr. Üyesi Memduh KÖSE Dr. Öğr. Üyesi Memduh KÖSE
Kırşehir Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
Detection and recognition of text in videos present significant challenges due to the wide range of font styles, varying text sizes, and diverse lighting conditions that can affect readability. The ability to accurately and efficiently detect text in such dynamic environments is essential for extracting meaningful information and enabling further processing. In this paper, real-time text detection and recognition for Turkish language has been analysed using different approaches. To identify the most suitable approach, multiple models, including EasyOCR, Tesseract, You Only Look Once, and Discrete Cosine Transform in conjunction with support vector machines were evaluated under different conditions. Since Turkish alphabet has similar letters, comparisons aim to improve the accuracy and speed of text extraction from video content, choosing a practical solution for real-time applications where precise text recognition is crucial.
Anahtar Kelimeler
Convolutional Neural Networks | Deep Learning | Image Processing | Machine Learning | Optical Character Recognition
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Doi Numarası 10.1109/ISAS66241.2025.11101765
Bildiri Dili İngilizce
Kongre Adı 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS)
Kongre Tarihi 27-06-2025 /
Basıldığı Ülke Türkiye
Basıldığı Şehir Gaziantep
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Real-Time Turkish Video Text Detection and Recognition

Paylaş