Yazarlar (2) |
![]() Türkiye |
![]() Türkiye |
Özet |
In this study, we utilize the Gram-Schmidt orthogonalization method to construct a new set of orthogonal polynomials called OB n (x, q) {{\rm{OB}}}_{n}(x,q) from the q-Bernoulli polynomials. We demonstrate the relationship between polynomials OB n (x, q) {{\rm{OB}}}_{n}(x,q) and the little q-Legendre polynomials, and derive a generalized formula for OB n (x, q) {{\rm{OB}}}_{n}(x,q) by leveraging the little q-Legendre polynomials. Furthermore, we present some properties of polynomials OB n (x, q) {{\rm{OB}}}_{n}(x,q). Finally, we introduce a hybrid of block-pulse function and orthogonal polynomials OB n (x, q) {{\rm{OB}}}_{n}(x,q) and examine various properties of these polynomials. |
Anahtar Kelimeler |
block-pulse functions | orthonormal polynomials | q-Bernoulli polynomials |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Demonstratio Mathematica |
Dergi ISSN | 2391-4661 Wos Dergi Scopus Dergi |
Dergi Tarandığı Indeksler | Wos, Science Citation Index Expanded, SCImago (SJR), SCI |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 06-2025 |
Cilt No | 58 |
Sayı | 1 |
Doi Numarası | 10.1515/dema-2025-0133 |