| Yazarlar (2) |
Dr. Öğr. Üyesi Semra KUŞ
Kırşehir Ahi Evran Üniversitesi, Türkiye |
|
Gazi Üniversitesi, Türkiye |
| Özet |
| In this study, we utilize the Gram-Schmidt orthogonalization method to construct a new set of orthogonal polynomials called OB n (x, q) {{\rm{OB}}}_{n}(x,q) from the q-Bernoulli polynomials. We demonstrate the relationship between polynomials OB n (x, q) {{\rm{OB}}}_{n}(x,q) and the little q-Legendre polynomials, and derive a generalized formula for OB n (x, q) {{\rm{OB}}}_{n}(x,q) by leveraging the little q-Legendre polynomials. Furthermore, we present some properties of polynomials OB n (x, q) {{\rm{OB}}}_{n}(x,q). Finally, we introduce a hybrid of block-pulse function and orthogonal polynomials OB n (x, q) {{\rm{OB}}}_{n}(x,q) and examine various properties of these polynomials. |
| Anahtar Kelimeler |
| block-pulse functions | orthonormal polynomials | q-Bernoulli polynomials |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | Demonstratio Mathematica |
| Dergi ISSN | 2025-0133 |
| Dergi Tarandığı Indeksler | SCI-Expanded |
| Dergi Grubu | Q1 |
| Makale Dili | İngilizce |
| Basım Tarihi | 06-2025 |
| Cilt No | 58 |
| Sayı | 1 |
| Doi Numarası | 10.1515/dema-2025-0133 |
| Makale Linki | https://doi.org/10.1515/dema-2025-0133 |