img
img
Transparent and bias-resilient AI framework for recidivism prediction using deep learning and clustering techniques in criminal justice     
Yazarlar (6)
Muhammed Cavus
Muhammed Nurullah Benli
Usame Altuntas
Öğr. Gör. Mahmut SARI Öğr. Gör. Mahmut SARI
Kırşehir Ahi Evran Üniversitesi, Türkiye
Huseyin Ayan
Yusuf Furkan Uğurluoğlu
Türkiye
Devamını Göster
Özet
This paper presents the Recidivism Clustering Network (RCN), an effective approach for predicting repeat offenses using deep learning (DL), clustering, and explainable AI (XAI). The RCN improves offender profiling for more accurate and interpretable recidivism predictions, aligning with key legal principles like fair sentencing, transparency, and non-discrimination. The RCN employs machine learning (ML) models optimized with a Keras tuner, using the Synthetic Minority Over-sampling Technique (SMOTE) to handle class imbalance. With about 75% accuracy, the model shows strong recall, identifying 10,661 recidivists but producing 4,038 false positives--indicating a trade-off between sensitivity and specificity. Beyond predictions, RCN integrates clustering methods, including k-means, principal component analysis (PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE), to identify hidden patterns within ...
Anahtar Kelimeler
Deep learning | Recidivism prediction | Explainable AI | Criminal justice system
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Applied Soft Computing
Dergi ISSN 1568-4946 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili Türkçe
Basım Tarihi 05-2025
Cilt No 176
Doi Numarası 10.1016/j.asoc.2025.113160
Makale Linki https://doi.org/10.1016/j.asoc.2025.113160