img
img
Automatic Segmentation of Quadriceps Femoris Cross-Sectional Area in Ultrasound Images: Development and Validation of Convolutional Neural Networks in People With Anterior ...  
Yazarlar (10)
Beyza Tayfur
Paul Ritsche
Olivia Sunderlik
Madison Wheeler
Eric Ramirez
Jacob Leuteneker
Oliver Faude
Martino V Franchi
Alexa K Johnson
Riann Palmieri-Smith
Devamını Göster
Özet
ObjectiveDeep learning approaches such as DeepACSA enable automated segmentation of muscle ultrasound cross-sectional area (CSA). Although they provide fast and accurate results, most are developed using data from healthy populations. The changes in muscle size and quality following anterior cruciate ligament (ACL) injury challenges the validity of these automated approaches in the ACL population. Quadriceps muscle CSA is an important outcome following ACL injury; therefore, our aim was to validate DeepACSA, a convolutional neural network (CNN) approach for ACL injury.MethodsQuadriceps panoramic CSA ultrasound images (vastus lateralis [VL] n = 430, rectus femoris [RF] n = 349, and vastus medialis [VM] n = 723) from 124 participants with an ACL injury (age 22.8 ± 7.9 y, 61 females) were used to train CNN models. For VL and RF, combined models included extra images from healthy ...
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü Uluslararası alan indekslerindeki dergilerde yayımlanan tam makale
Dergi Adı Ultrasound in Medicine & Biology
Dergi Tarandığı Indeksler
Makale Dili İngilizce
Basım Tarihi 02-2025
Cilt No 51
Sayı 2
Sayfalar 364 / 372
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş