| Yazarlar (3) | 
|  Dr. Öğr. Üyesi Semra KUŞ Kırşehir Ahi Evran Üniversitesi, Türkiye | 
|  Naim Tuğlu Gazi Üniversitesi, Türkiye | 
|  Taekyun Kim Kwangwoon University, Güney Kore | 
| Özet | 
| In this article, we define the Euler–Fibonacci numbers, polynomials and their exponential generating function. Several relations are established involving the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials. A new exponential generating function is obtained for the Bernoulli F-polynomials. Also, we describe the Fibo–Bernoulli matrix, the Fibo–Euler matrix and the Fibo–Euler polynomial matrix by using the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials, respectively. Factorization of the Fibo–Bernoulli matrix is obtained by using the generalized Fibo–Pascal matrix and a special matrix whose entries are the Bernoulli–Fibonacci numbers. The inverse of the Fibo–Bernoulli matrix is also found. | 
| Anahtar Kelimeler | 
| Bernoulli F-polynomials | Bernoulli matrices | Bernoulli polynomials | Euler–Fibonacci numbers | Generating function | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale | 
| Dergi Adı | Advances in Difference Equations | 
| Dergi ISSN | 1 | 
| Dergi Tarandığı Indeksler | SCI-Expanded | 
| Dergi Grubu | Q1 | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 04-2019 | 
| Cilt No | 2019 | 
| Sayı | 145 | 
| Doi Numarası | 10.1186/s13662-019-2084-6 | 
| Makale Linki | https://doi.org/10.1186/s13662-019-2084-6 | 
| Atıf Sayıları | |
| SCOPUS | 18 | 
| Google Scholar | 29 |