Yazarlar |
Dr. Öğr. Üyesi Semra KUŞ
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Naim Tuglu
Gazi Üniversitesi, Turkey |
Taekyun Kim
Kwangwoon University, South Korea |
Özet |
In this article, we define the Euler–Fibonacci numbers, polynomials and their exponential generating function. Several relations are established involving the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials. A new exponential generating function is obtained for the Bernoulli F-polynomials. Also, we describe the Fibo–Bernoulli matrix, the Fibo–Euler matrix and the Fibo–Euler polynomial matrix by using the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials, respectively. Factorization of the Fibo–Bernoulli matrix is obtained by using the generalized Fibo–Pascal matrix and a special matrix whose entries are the Bernoulli–Fibonacci numbers. The inverse of the Fibo–Bernoulli matrix is also found. |
Anahtar Kelimeler |
Bernoulli F-polynomials | Bernoulli matrices | Bernoulli polynomials | Euler–Fibonacci numbers | Generating function |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Advances in Difference Equations |
Dergi ISSN | 1687-1839 |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 12-2019 |
Cilt No | 2019 |
Sayı | 1 |
Doi Numarası | 10.1186/s13662-019-2084-6 |
Atıf Sayıları | |
SCOPUS | 13 |
Google Scholar | 24 |