img
img
Bernoulli F-polynomials and Fibo–Bernoulli matrices    
Yazarlar (3)
Dr. Öğr. Üyesi Semra KUŞ Dr. Öğr. Üyesi Semra KUŞ
Kırşehir Ahi Evran Üniversitesi, Türkiye
Naim Tuğlu
Gazi Üniversitesi, Türkiye
Taekyun Kim
Devamını Göster
Özet
In this article, we define the Euler–Fibonacci numbers, polynomials and their exponential generating function. Several relations are established involving the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials. A new exponential generating function is obtained for the Bernoulli F-polynomials. Also, we describe the Fibo–Bernoulli matrix, the Fibo–Euler matrix and the Fibo–Euler polynomial matrix by using the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials, respectively. Factorization of the Fibo–Bernoulli matrix is obtained by using the generalized Fibo–Pascal matrix and a special matrix whose entries are the Bernoulli–Fibonacci numbers. The inverse of the Fibo–Bernoulli matrix is also found.
Anahtar Kelimeler
Bernoulli F-polynomials | Bernoulli matrices | Bernoulli polynomials | Euler–Fibonacci numbers | Generating function
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Advances in Difference Equations
Dergi ISSN 1
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 04-2019
Cilt No 2019
Sayı 145
Doi Numarası 10.1186/s13662-019-2084-6
Makale Linki https://doi.org/10.1186/s13662-019-2084-6
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
SCOPUS 15
Google Scholar 27
Bernoulli F-polynomials and Fibo–Bernoulli matrices

Paylaş