img
Bernoulli F-polynomials and Fibo–Bernoulli matrices   
Yazarlar
Dr. Öğr. Üyesi Semra KUŞ Dr. Öğr. Üyesi Semra KUŞ
Kırşehir Ahi Evran Üniversitesi, Türkiye
Naim Tuglu
Gazi Üniversitesi, Turkey
Taekyun Kim
Kwangwoon University, South Korea
Özet
In this article, we define the Euler–Fibonacci numbers, polynomials and their exponential generating function. Several relations are established involving the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials. A new exponential generating function is obtained for the Bernoulli F-polynomials. Also, we describe the Fibo–Bernoulli matrix, the Fibo–Euler matrix and the Fibo–Euler polynomial matrix by using the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials, respectively. Factorization of the Fibo–Bernoulli matrix is obtained by using the generalized Fibo–Pascal matrix and a special matrix whose entries are the Bernoulli–Fibonacci numbers. The inverse of the Fibo–Bernoulli matrix is also found.
Anahtar Kelimeler
Bernoulli F-polynomials | Bernoulli matrices | Bernoulli polynomials | Euler–Fibonacci numbers | Generating function
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Advances in Difference Equations
Dergi ISSN 1687-1839
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 12-2019
Cilt No 2019
Sayı 1
Doi Numarası 10.1186/s13662-019-2084-6
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
SCOPUS 13
Google Scholar 24
Bernoulli F-polynomials and Fibo–Bernoulli matrices

Paylaş