img
Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces    
Yazarlar
Süleyman Çelik
Fırat Üniversitesi, Türkiye
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye
Prof. Dr. Ali AKBULUT Prof. Dr. Ali AKBULUT
Kırşehir Ahi Evran Üniversitesi, Türkiye
Özet
Let L = −∆ + V be the Schrödinger operator on [Formula presented], where V ≠ 0 is a non-negative function satisfying the reverse Hölder class RHq1 for some q1 > n∕2. ∆ is the Laplacian on [Formula presented]. Assume that b is a member of the Campanato space Λθν(ρ) and that the fractional integral operator associated with L is [Formula presented]. We study the boundedness of the commutators [Formula presented] with b ∈ Λθν(ρ) on local generalized mixed Morrey spaces. Generalized mixed Morrey spaces [Formula presented], vanishing generalized mixed Morrey spaces[Formula presented], and [Formula presented] are related to the Schrödinger operator, in that order. We demonstrate that the commutator operator [Formula presented] is satisfied when b belongs to Λθν(ρ) with θ > 0, 0 < ν < 1, and (φ1, φ2) satisfying certain requirements are bounded from [Formula presented] to [Formula presented]; from [Formula presented] to [Formula presented], and from [Formula presented] to [Formula presented].
Anahtar Kelimeler
commutator | fractional integral | Lipschitz function | local generalized mixed Morrey space | Schrödinger operator
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Open Mathematics
Dergi ISSN 2391-5455
Dergi Tarandığı Indeksler SCI
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 01-2024
Cilt No 22
Sayı 1
Sayfalar 12 / 12
Doi Numarası 10.1515/math-2024-0082
Makale Linki https://www.degruyter.com/document/doi/10.1515/math-2024-0082/html?srsltid=AfmBOorhKQjqj7267Cq0_QmbXtaE7L0W0ApTVNg6UavhRiBFMVeMBVt3