Yazarlar |
Süleyman Çelik
Fırat Üniversitesi, Türkiye |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Ali AKBULUT
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Özet |
Let L = −∆ + V be the Schrödinger operator on [Formula presented], where V ≠ 0 is a non-negative function satisfying the reverse Hölder class RHq1 for some q1 > n∕2. ∆ is the Laplacian on [Formula presented]. Assume that b is a member of the Campanato space Λθν(ρ) and that the fractional integral operator associated with L is [Formula presented]. We study the boundedness of the commutators [Formula presented] with b ∈ Λθν(ρ) on local generalized mixed Morrey spaces. Generalized mixed Morrey spaces [Formula presented], vanishing generalized mixed Morrey spaces[Formula presented], and [Formula presented] are related to the Schrödinger operator, in that order. We demonstrate that the commutator operator [Formula presented] is satisfied when b belongs to Λθν(ρ) with θ > 0, 0 < ν < 1, and (φ1, φ2) satisfying certain requirements are bounded from [Formula presented] to [Formula presented]; from [Formula presented] to [Formula presented], and from [Formula presented] to [Formula presented]. |
Anahtar Kelimeler |
commutator | fractional integral | Lipschitz function | local generalized mixed Morrey space | Schrödinger operator |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Open Mathematics |
Dergi ISSN | 2391-5455 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 11-2024 |
Cilt No | 22 |
Sayı | 22 |
Sayfalar | 1 / 12 |
Doi Numarası | 10.1515/math-2024-0082 |
Makale Linki | http://dx.doi.org/10.1515/math-2024-0082 |