img
Design, synthesis, characterization, theoretical calculations, molecular docking studies, and biological evaluation of new Fe(II) and Cu(II) complexes of 2-acetylpyridine derivative sulfonyl hydrazone Schiff base   
Yazarlar
Dr. Öğr. Üyesi Murat ÇINARLI Dr. Öğr. Üyesi Murat ÇINARLI
Kırşehir Ahi Evran Üniversitesi, Türkiye
Çiğdem Yüksektepe Ataol
Çankiri Karatekin Üniversitesi, Turkey
Celal Tuğrul Zeyrek
Çankiri Karatekin Üniversitesi, Turkey
Hatice Öğütcü
Kırşehir Ahi Evran Üniversitesi, Turkey
Leyla Açık
Gazi Üniversitesi, Turkey
Hümeyra Batı
Ondokuz Mayis Üniversitesi, Turkey
Özet
Sulfonylhydrazones and their metal complexes are known to have potential biological activity. In this study, new Fe(II) (1) and Cu(II) (2) complexes of the 2-acetylpyridine derivative sulfonyl hydrazone (LH) were prepared. The new metal complexes were characterized by elemental analysis, IR spectroscopy, UV spectroscopy, and magnetic moment measurements. The molecular structure of (2) was elucidated by X-ray diffraction analysis, and the crystal package was obtained in three-dimensional space. To support the intermolecular interactions obtained from the X-ray diffraction results, Hirshfeld surface analysis and two-dimensional fingerprint maps of (2) were generated. The optimized molecular structures, total energies, molecular orbital energy values, molecular electrostatic potential maps, percentage distributions of the atomic orbitals to the molecular orbital energy levels, and global reactivity parameters of LH, 1, and 2 are obtained by using DFT/B3LYP/6–311G(d, p) for LH and DFT/B3LYP/LanL2DZ for 1 and 2 is 1:2. Elemental analysis showed that the stoichiometric metal/ligand ratio for 1 and 2. All data indicate that the ligand coordinates with the metal atoms via pyridine imine /nitrogens and sulfonyl oxygen. The well-diffusion approach was also used to test the antibacterial properties of the ligand and complexes against harmful microbes. The compounds were tested for DNA cleavage using agarose gel electrophoresis. Complex 1 was found to be effective on the plasmid DNA of pBR322. Finally, molecular docking studies of LH, 1, and 2 with A-DNA (PDB ID:3V9D), and B-DNA (PDB ID:1BNA) were presented to compare the experimental and theoretical results.
Anahtar Kelimeler
2-acetylpyridine | DFT | Hirsfeld surface | Molecular docking | Sulfonylhydrazone
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF MOLECULAR STRUCTURE
Dergi ISSN 0022-2860
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 02-2025
Cilt No 1321
Sayı 1
Doi Numarası 10.1016/j.molstruc.2024.140112