img
img
Humans Verification by Adopting Deep Recurrent Fingerphotos Network       
Yazarlar (2)
Islam Nahedh Alabdoo
Dr. Öğr. Üyesi Mehmet Ali YALÇINKAYA Dr. Öğr. Üyesi Mehmet Ali YALÇINKAYA
Kırşehir Ahi Evran Üniversitesi, Türkiye
Devamını Göster
Özet
Fingerphoto can be considered as one of recent and interesting biometrics. It basically means a fingerprint image that is acquired by a smartphone in contactless manner. This paper proposes a new Deep Recurrent Learning (DRL) approach for verifying humans based on their fingerphoto image. It is called the Deep Recurrent Fingerphotos Network (DRFN). It compromises of input layer, sequence of hidden layers, output layer and essential feedback. The proposed DRFN sequentially accepts fingerphoto images of all personal fingers. It has the capability to change between the weights of each individual fingerphoto and provide verification. A huge number of fingerphoto images have been acquired, arranged, segmented and utilized as a useful dataset in this paper. It is named the Fingerphoto Images of Ten Fingers (FITF) dataset. Average accuracy result of 99.84 % is obtained for personal verification by exploiting fingerphotos.
Anahtar Kelimeler
Biometric | Deep Learning | Finger Images | Personal Recognition | Verification
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı Baghdad Science Journal
Dergi ISSN 2078-8665 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler Scopus
Makale Dili İngilizce
Basım Tarihi 05-2024
Cilt No 21
Sayı 5
Sayfalar 1827 / 1839
Doi Numarası 10.21123/bsj.2024.10552
Makale Linki http://dx.doi.org/10.21123/bsj.2024.10552
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 1
SCOPUS 1
Google Scholar 1
Humans Verification by Adopting Deep Recurrent Fingerphotos Network

Paylaş