| Yazarlar (3) | 
|  Prof. Dr. Vagıf GULIYEV Dumlupinar Üniversitesi, Türkiye | 
|  Yagub Y. Mammadov Nakhchivan State University, Azerbaycan | 
|  Fatma A. Muslumova Nakhchivan State University, Azerbaycan | 
| Özet | 
| On the real line, the Dunkl operators Dν (f)(x):=d f(x) dx+(2ν+1)f(x)− f(−x), ∀x ∈R, ∀ν ≥ −1 2x 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators{ }d Dk,j are the differential-difference operators associated with the reflection group Z2don Rd. In this paper, in the setting R we show that j=1 b ∈ BMO(R, dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ (R, dmν). Also in the setting Rd we show that b ∈ BMO(Rd, h2k (x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ (Rd, h2k(x)dx).. | 
| Anahtar Kelimeler | 
| BMO | commutator | Dunkl operator | Maximal operator | Orlicz space | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SCOPUS dergilerinde yayınlanan tam makale | 
| Dergi Adı | Journal of Mathematical Study | 
| Dergi ISSN | 2617-8702 Wos Dergi Scopus Dergi | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 01-2020 | 
| Cilt No | 53 | 
| Sayı | 1 | 
| Sayfalar | 45 / 65 | 
| Doi Numarası | 10.4208/jms.v53n1.20.03 | 
| Atıf Sayıları | |
| WoS | 1 | 
| SCOPUS | 6 |