Yazarlar |
Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye |
Yagub Y. Mammadov
Nakhchivan State University, Azerbaijan |
Fatma A. Muslumova
Nakhchivan State University, Azerbaijan |
Özet |
On the real line, the Dunkl operators Dν (f)(x):=d f(x) dx+(2ν+1)f(x)− f(−x), ∀x ∈R, ∀ν ≥ −1 2x 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators{ }d Dk,j are the differential-difference operators associated with the reflection group Z2don Rd. In this paper, in the setting R we show that j=1 b ∈ BMO(R, dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ (R, dmν). Also in the setting Rd we show that b ∈ BMO(Rd, h2k (x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ (Rd, h2k(x)dx).. |
Anahtar Kelimeler |
BMO | commutator | Dunkl operator | Maximal operator | Orlicz space |
Makale Türü | Özgün Makale |
Makale Alt Türü | SCOPUS dergilerinde yayımlanan tam makale |
Dergi Adı | Journal of Mathematical Study |
Dergi ISSN | 2617-8702 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2020 |
Cilt No | 53 |
Sayı | 1 |
Sayfalar | 45 / 65 |
Doi Numarası | 10.4208/jms.v53n1.20.03 |