img
GENERALIZED FOURIER TRANSFORM: ILLUSTRATIVEEXAMPLES AND APPLICATIONS TO DIFFERENTIALEQUATIONS    
Yazarlar
Enes Ata
Prof. Dr. İsmail Onur KIYMAZ Prof. Dr. İsmail Onur KIYMAZ
Kırşehir Ahi Evran Üniversitesi, Türkiye
Özet
In this paper, we define generalized Fourier and inverse Fourier transforms containing the h-exponential function in their kernels and give the fundamental properties of these transforms. We also compute the transforms of both the classical and the generalized Riemann-Liouville and Caputo fractional operators. In addition, we compute the transforms of some elementary and generalized special functions as well. Finally, as applications, we obtain the solutions of two differential equations with ordinary and fractional derivatives using the transforms we have defined.
Anahtar Kelimeler
beta function | Fourier transform | fractional derivatives and integrals | fractional differential equations | gamma function | ordinary differential equations
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı Journal of Mathematical Analysis
Dergi ISSN 2217-3412
Dergi Tarandığı Indeksler ESCI
Makale Dili İngilizce
Basım Tarihi 01-2024
Cilt No 15
Sayı 2
Sayfalar 14 / 33
Doi Numarası 10.54379/jma-2024-2-2
Makale Linki https://research.ebsco.com/c/yudfhe/viewer/pdf/hkzsv6zdkf