Yazarlar |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye |
J. J. Hasanov
Azerbaijan National Academy of Sciences, Azerbaijan |
S. G. Samko
Universidade do Algarve, Portugal |
Özet |
We consider generalized Morrey type spaces Mp(·), θ(·), ω(·) (ω)with variable exponents p(x), θ(r) and a general function ω(x, r) defining a Morrey type norm. In the case of bounded sets ω ⊂ ℝn, we prove the boundedness of the Hardy-Littlewood maximal operator and Calderón-Zygmund singular integral operators with standard kernel. We prove a Sobolev-Adams type embedding theorem Mp(·), θ1(·), ω1(·) (ω) → Mp(·), θ2(·), ω2(·) (ω) for the potential type operator Iα(·) of variable order. In all the cases, we do not impose any monotonicity type conditions on ω(x, r) with respect to r. Bibliography: 40 titles. © 2010 Springer Science+Business Media, Inc. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | SCOPUS dergilerinde yayımlanan tam makale |
Dergi Adı | Journal of Mathematical Sciences |
Dergi ISSN | 1072-3374 |
Makale Dili | İngilizce |
Basım Tarihi | 10-2010 |
Cilt No | 170 |
Sayı | 4 |
Sayfalar | 423 / 443 |
Doi Numarası | 10.1007/s10958-010-0095-7 |