img
Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces   
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye
J. J. Hasanov
Azerbaijan National Academy of Sciences, Azerbaijan
S. G. Samko
Universidade do Algarve, Portugal
Özet
We consider generalized Morrey type spaces Mp(·), θ(·), ω(·) (ω)with variable exponents p(x), θ(r) and a general function ω(x, r) defining a Morrey type norm. In the case of bounded sets ω ⊂ ℝn, we prove the boundedness of the Hardy-Littlewood maximal operator and Calderón-Zygmund singular integral operators with standard kernel. We prove a Sobolev-Adams type embedding theorem Mp(·), θ1(·), ω1(·) (ω) → Mp(·), θ2(·), ω2(·) (ω) for the potential type operator Iα(·) of variable order. In all the cases, we do not impose any monotonicity type conditions on ω(x, r) with respect to r. Bibliography: 40 titles. © 2010 Springer Science+Business Media, Inc.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayımlanan tam makale
Dergi Adı Journal of Mathematical Sciences
Dergi ISSN 1072-3374
Makale Dili İngilizce
Basım Tarihi 10-2010
Cilt No 170
Sayı 4
Sayfalar 423 / 443
Doi Numarası 10.1007/s10958-010-0095-7