img
Maximal, Potential, and Singular Operators in the Generalized Variable Exponent Morrey Spaces on Unbounded Sets   
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye
S. G. Samko
Universidade do Algarve, Portugal
Özet
We consider generalized Morrey spaces Mp(·),ω(·)(Ω) with a variable exponent p(x) and a general function ω(x, r) defining a Morrey type norm. We extend the results obtained earlier for bounded sets Ω ⊂ ℝn by proving the boundedness of the Hardy-Littlewood maximal operator and Calderón-Zygmund singular operators with standard kernels in Mp(·),ω(·)(Ω). We prove a Sobolev type Mp(·),ω1(·)(Ω) → Mq(·),ω2(·)(Ω)-theorem, both the Spanne and Adams versions, for potential operators I α(·), where α(x) can be variable even if Ω is unbounded. The boundedness conditions are formulated either in terms of Zygmund type integral inequalities on ω(x, r) or in terms of supremal operators. Bibliography: 36 titles. © 2013 Springer Science+Business Media New York.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayımlanan tam makale
Dergi Adı Journal of Mathematical Sciences (United States)
Dergi ISSN 1072-3374
Makale Dili İngilizce
Basım Tarihi 08-2013
Cilt No 193
Sayı 2
Sayfalar 228 / 248
Doi Numarası 10.1007/s10958-013-1449-8