Yazarlar |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye |
S. G. Samko
Universidade do Algarve, Portugal |
Özet |
We consider generalized Morrey spaces Mp(·),ω(·)(Ω) with a variable exponent p(x) and a general function ω(x, r) defining a Morrey type norm. We extend the results obtained earlier for bounded sets Ω ⊂ ℝn by proving the boundedness of the Hardy-Littlewood maximal operator and Calderón-Zygmund singular operators with standard kernels in Mp(·),ω(·)(Ω). We prove a Sobolev type Mp(·),ω1(·)(Ω) → Mq(·),ω2(·)(Ω)-theorem, both the Spanne and Adams versions, for potential operators I α(·), where α(x) can be variable even if Ω is unbounded. The boundedness conditions are formulated either in terms of Zygmund type integral inequalities on ω(x, r) or in terms of supremal operators. Bibliography: 36 titles. © 2013 Springer Science+Business Media New York. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | SCOPUS dergilerinde yayımlanan tam makale |
Dergi Adı | Journal of Mathematical Sciences (United States) |
Dergi ISSN | 1072-3374 |
Makale Dili | İngilizce |
Basım Tarihi | 08-2013 |
Cilt No | 193 |
Sayı | 2 |
Sayfalar | 228 / 248 |
Doi Numarası | 10.1007/s10958-013-1449-8 |