 
  
  
		| Yazarlar (2) | 
|  Prof. Dr. Vagıf GULIYEV | 
|  S. G. Samko Universidade Do Algarve, Portekiz | 
| Özet | 
| We consider generalized Morrey spaces Mp(·),ω(·)(Ω) with a variable exponent p(x) and a general function ω(x, r) defining a Morrey type norm. We extend the results obtained earlier for bounded sets Ω ⊂ ℝn by proving the boundedness of the Hardy-Littlewood maximal operator and Calderón-Zygmund singular operators with standard kernels in Mp(·),ω(·)(Ω). We prove a Sobolev type Mp(·),ω1(·)(Ω) → Mq(·),ω2(·)(Ω)-theorem, both the Spanne and Adams versions, for potential operators I α(·), where α(x) can be variable even if Ω is unbounded. The boundedness conditions are formulated either in terms of Zygmund type integral inequalities on ω(x, r) or in terms of supremal operators. Bibliography: 36 titles. © 2013 Springer Science+Business Media New York. | 
| Anahtar Kelimeler | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SCOPUS dergilerinde yayınlanan tam makale | 
| Dergi Adı | Journal of Mathematical Sciences (United States) | 
| Dergi ISSN | 1072-3374 Scopus Dergi | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 08-2013 | 
| Cilt No | 193 | 
| Sayı | 2 | 
| Sayfalar | 228 / 248 | 
| Doi Numarası | 10.1007/s10958-013-1449-8 |