img
Regularity of solutions of elliptic equations in divergence form in modified local generalized Morrey spaces    
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi, Türkiye
M. N. Omarova
M. A. Ragusa
A. Scapellato
Özet
Aim of this paper is to prove regularity results, in some Modified Local Generalized Morrey Spaces, for the first derivatives of the solutions of a divergence elliptic second order equation of the form Lu:=∑i,j=1n(aij(x)uxi)xj=∇·f,for almost allx∈Ωwhere the coefficients aij belong to the Central (that is, Local) Sarason class CVMO and f is assumed to be in some Modified Local Generalized Morrey Spaces LM~{x0}p,φ. Heart of the paper is to use an explicit representation formula for the first derivatives of the solutions of the elliptic equation in divergence form, in terms of singular integral operators and commutators with Calderón–Zygmund kernels. Combining the representation formula with some Morrey-type estimates for each operator that appears in it, we derive several regularity results.
Anahtar Kelimeler
Elliptic equations | Integral operators | Morrey-type spaces | VMO
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Analysis and Mathematical Physics
Dergi ISSN 1664-2368
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili Türkçe
Basım Tarihi 12-2020
Cilt No 11
Sayı 1
Doi Numarası 10.1007/s13324-020-00433-9
Makale Linki http://dx.doi.org/10.1007/s13324-020-00433-9