| Yazarlar (5) |
Prof. Dr. Vagıf GULIYEV
|
|
|
|
|
|
|
|
|
| Özet |
| In this paper the generalized shift operator is considered generated by the Bessel differential operator B-n = partial derivative(2)/partial derivativex(n)(2) + gamma/x(n) partial derivative/partial derivativex(n), by means of which anisotropic Fourier-Bessel singular integral operators (B-n- anisotropic singular integral operators) are investigated. The boundedness of the anisotropic Fourier-Bessel singular integral operators is proved acting boundedly on the space L-p(gamma)(R-+(n)) equivalent to L-p(R-+(n), x(n)(gamma)dx). As well are proved limits embedding theorems on the Sobolev-Bessel space W-p,gamma(l1,...,ln) (R-+(n)). |
| Anahtar Kelimeler |
| Bildiri Türü | Tebliğ/Bildiri |
| Bildiri Alt Türü | Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum) |
| Bildiri Niteliği | Web of Science Kapsamındaki Kongre/Sempozyum |
| Bildiri Dili | İngilizce |
| Kongre Adı | |
| Kongre Tarihi | / |
| Basıldığı Ülke | |
| Basıldığı Şehir |