| Yazarlar (5) | 
|  Prof. Dr. Vagıf GULIYEV | 
|  Akh Narimanov | 
|  Hgw Begehr | 
|  Rp Gilbert | 
|  Mw Wong | 
| Özet | 
| In this paper the generalized shift operator is considered generated by the Bessel differential operator B-n = partial derivative(2)/partial derivativex(n)(2) + gamma/x(n) partial derivative/partial derivativex(n), by means of which anisotropic Fourier-Bessel singular integral operators (B-n- anisotropic singular integral operators) are investigated. The boundedness of the anisotropic Fourier-Bessel singular integral operators is proved acting boundedly on the space L-p(gamma)(R-+(n)) equivalent to L-p(R-+(n), x(n)(gamma)dx). As well are proved limits embedding theorems on the Sobolev-Bessel space W-p,gamma(l1,...,ln) (R-+(n)). | 
| Anahtar Kelimeler | 
| Bildiri Türü | Tebliğ/Bildiri | 
| Bildiri Alt Türü | Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum) | 
| Bildiri Niteliği | Web of Science Kapsamındaki Kongre/Sempozyum | 
| Bildiri Dili | İngilizce | 
| Kongre Adı | |
| Kongre Tarihi | / | 
| Basıldığı Ülke | |
| Basıldığı Şehir |