img
img
Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces    
Yazarlar (3)
V. I. Burenkov
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
G. V. Guliev
Devamını Göster
Özet
The boundedness of the fractional maximal operator in local and global Morrey-type spaces are described. An estimate for the norm of the maximal function over a ball is obtained, which reduces the problem to the boundedness of the Hardy operator in weighted spaces on a half-line on the cone of nonnegative nonincreasing functions. This helps to derive sufficient conditions for the boundedness of the fractional maximal operator for all admissible parameter values. These sufficient conditions are also necessary under certain relations between the parameters for local Morrey-type spaces. The spaces are the classical Morrey spaces that were used to analyze the local behavior of solutions to second-order elliptic differential equations. The necessary and sufficient conditions for the boundedness of the fractional maximal operator from one weighted Lebesgue space to another imply necessary and sufficient …
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı DOKLADY MATHEMATICS
Dergi ISSN 1064-5624 Wos Dergi Scopus Dergi
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 07-2006
Cilt No 74
Sayı 1
Sayfalar 540 / 544
Doi Numarası 10.1134/S1064562406040181