img
On boundedness of the generalized B-potential integral operators in the Lorentz spaces    
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
A. Serbetci
I. Ekincioglu
Özet
In this paper, we study the convolution operator (B-convolution), and the generalized B-potential integral and fractional integral (B-fractional integral) with rough kernel, associated with the Laplace-Bessel differential operator Delta(B) = Sigma(k)(i=1) B-i + Sigma(n)(j=k+1)(partial derivative(2)/partial derivative x(j)(2)), B-i = (partial derivative(2)/partial derivative x(i)(2)) + (gamma(i)/x(i))(partial derivative/partial derivative x(i)). We get O'Neil type inequality for the B-convolution. By using O'Neil type inequality we obtain a pointwise rearrangement estimate of the generalized B-potential integral. We prove the boundedness of the generalized B-potential integral operator in the Lorentz spaces, and the proof is based on the pointwise estimate of the rearrangement of this operator.
Anahtar Kelimeler
B-fractional integral | Generalized B-potential integrals | Laplace-Bessel differential operator | Lorentz spaces | O'Neil type inequality
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS
Dergi ISSN 1065-2469
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 01-2007
Cilt No 18
Sayı 12
Sayfalar 885 / 895
Doi Numarası 10.1080/10652460701510980