img
On boundedness of the generalized B-potential integral operators in the Lorentz spaces    
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
A. Serbetci
I. Ekincioglu
Özet
In this paper, we study the convolution operator (B-convolution), and the generalized B-potential integral and fractional integral (B-fractional integral) with rough kernel, associated with the Laplace-Bessel differential operator Delta(B) = Sigma(k)(i=1) B-i + Sigma(n)(j=k+1)(partial derivative(2)/partial derivative x(j)(2)), B-i = (partial derivative(2)/partial derivative x(i)(2)) + (gamma(i)/x(i))(partial derivative/partial derivative x(i)). We get O'Neil type inequality for the B-convolution. By using O'Neil type inequality we obtain a pointwise rearrangement estimate of the generalized B-potential integral. We prove the boundedness of the generalized B-potential integral operator in the Lorentz spaces, and the proof is based on the pointwise estimate of the rearrangement of this operator.
Anahtar Kelimeler
B-fractional integral | Generalized B-potential integrals | Laplace-Bessel differential operator | Lorentz spaces | O'Neil type inequality
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS
Dergi ISSN 1065-2469
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 01-2007
Cilt No 18
Sayı 12
Sayfalar 885 / 895
Doi Numarası 10.1080/10652460701510980