Yazarlar |
Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
A. Serbetci
|
I. Ekincioglu
|
Özet |
In this paper, we study the convolution operator (B-convolution), and the generalized B-potential integral and fractional integral (B-fractional integral) with rough kernel, associated with the Laplace-Bessel differential operator Delta(B) = Sigma(k)(i=1) B-i + Sigma(n)(j=k+1)(partial derivative(2)/partial derivative x(j)(2)), B-i = (partial derivative(2)/partial derivative x(i)(2)) + (gamma(i)/x(i))(partial derivative/partial derivative x(i)). We get O'Neil type inequality for the B-convolution. By using O'Neil type inequality we obtain a pointwise rearrangement estimate of the generalized B-potential integral. We prove the boundedness of the generalized B-potential integral operator in the Lorentz spaces, and the proof is based on the pointwise estimate of the rearrangement of this operator. |
Anahtar Kelimeler |
B-fractional integral | Generalized B-potential integrals | Laplace-Bessel differential operator | Lorentz spaces | O'Neil type inequality |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS |
Dergi ISSN | 1065-2469 |
Dergi Grubu | Q3 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2007 |
Cilt No | 18 |
Sayı | 12 |
Sayfalar | 885 / 895 |
Doi Numarası | 10.1080/10652460701510980 |