img
O'Neil inequality for multilinear convolutions and some applications    
Yazarlar
Vagif S. Guliyev
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Özet
In this paper we prove the O'Neil inequality for the k-linear convolution f circle times g. By using the O'Neil inequality for rearrangements we obtain a pointwise rearrangement estimate of the k-linear convolution. As an application, we obtain necessary and sufficient conditions on the parameters for the boundedness of the k-sublinear fractional maximal operator M-Omega,M-alpha a and k-linear fractional integral operator I-Omega,I-alpha a with rough kernels from the spaces L-p1 x L-p2 x ... x L-pk (R-n) to L-q(R-n).
Anahtar Kelimeler
Lebesgue space | O'Neil inequality | Rearrangement estimate | Rough k-sublinear fractional maximal function | Rough multilinear fractional integral
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı INTEGRAL EQUATIONS AND OPERATOR THEORY
Dergi ISSN 0378-620X
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 04-2008
Cilt No 60
Sayı 4
Sayfalar 485 / 497
Doi Numarası 10.1007/s00020-008-1576-7