img
On the rearrangement estimates and the boundedness of the generalized fractional integrals associated with the Laplace-Bessel differential operator   
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Z. V. Safarov
A. Serbetci
Özet
We introduce the generalized fractional integrals (generalized B-fractional integrals) generated by the Delta(B) Laplace-Bessel differential operator and give some results for them. We obtain O'Neil type inequalities for the B-convolutions and give pointwise rearrangement estimates of the generalized B-fractional integrals. Then we get the L (p,gamma) -boundedness of the generalized B-convolution operator, the generalized B-Riesz potential and the generalized fractional B-maximal function. Finally, we prove a sharp pointwise estimate of the nonincreasing rearrangement of the generalized fractional B-maximal function.
Anahtar Kelimeler
B-convolution | Generalized B-fractional integral | Generalized shift operator | Laplace-Bessel differential operator | O'Neil type inequality
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı ACTA MATHEMATICA HUNGARICA
Dergi ISSN 0236-5294
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 05-2008
Cilt No 119
Sayı 3
Sayfalar 201 / 217
Doi Numarası 10.1007/s10474-007-6107-5