img
img
On the rearrangement estimates and the boundedness of the generalized fractional integrals associated with the Laplace-Bessel differential operator   
Yazarlar (3)
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Z. V. Safarov
A. Serbetci
Devamını Göster
Özet
We introduce the generalized fractional integrals (generalized B-fractional integrals) generated by the Delta(B) Laplace-Bessel differential operator and give some results for them. We obtain O'Neil type inequalities for the B-convolutions and give pointwise rearrangement estimates of the generalized B-fractional integrals. Then we get the L (p,gamma) -boundedness of the generalized B-convolution operator, the generalized B-Riesz potential and the generalized fractional B-maximal function. Finally, we prove a sharp pointwise estimate of the nonincreasing rearrangement of the generalized fractional B-maximal function.
Anahtar Kelimeler
B-convolution | Generalized B-fractional integral | Generalized shift operator | Laplace-Bessel differential operator | O'Neil type inequality
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı ACTA MATHEMATICA HUNGARICA
Dergi ISSN 0236-5294 Wos Dergi Scopus Dergi
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 05-2008
Cilt No 119
Sayı 3
Sayfalar 201 / 217
Doi Numarası 10.1007/s10474-007-6107-5