img
Meda Inequality for Rearrangements of the Convolution on the Heisenberg Group and Some Applications   
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
A. Serbetci
E. Guner
S. Balci
Özet
The Meda inequality for rearrangements of the convolution operator on the Heisenberg group H(n) is proved. By using the Meda inequality, an O'Neil-type inequality for the convolution is obtained. As applications of these results, some sufficient and necessary conditions for the boundedness of the fractional maximal operator M(Omega,alpha) a and fractional integral operator I(Omega,alpha) a with rough kernels in the spaces L(p)(H(n)) are found. Finally, we give some comments on the extension of our results to the case of homogeneous groups. Copyright (C) 2009 V. S. Guliyev et al.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF INEQUALITIES AND APPLICATIONS
Dergi ISSN 1029-242X
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 01-2009
Cilt No 2009
Sayı 1
Doi Numarası 10.1155/2009/864191