Yazarlar |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
A. Serbetci
|
E. Guner
|
S. Balci
|
Özet |
The Meda inequality for rearrangements of the convolution operator on the Heisenberg group H(n) is proved. By using the Meda inequality, an O'Neil-type inequality for the convolution is obtained. As applications of these results, some sufficient and necessary conditions for the boundedness of the fractional maximal operator M(Omega,alpha) a and fractional integral operator I(Omega,alpha) a with rough kernels in the spaces L(p)(H(n)) are found. Finally, we give some comments on the extension of our results to the case of homogeneous groups. Copyright (C) 2009 V. S. Guliyev et al. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | JOURNAL OF INEQUALITIES AND APPLICATIONS |
Dergi ISSN | 1029-242X |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2009 |
Cilt No | 2009 |
Sayı | 1 |
Doi Numarası | 10.1155/2009/864191 |