img
Stein-Weiss inequalities for the fractional integral operators in Carnot groups and applications    
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Rza Ch. Mustafayev
Ayhan Serbetci
Özet
In this article we consider the fractional integral operator I-alpha on any Carnot group G (i. e. nilpotent stratified Lie group) in the weighted Lebesgue spaces L-p,L- rho(x)beta (G). We establish Stein-Weiss inequalities for I-alpha, and obtain necessary and sufficient conditions on the parameters for the boundedness of the fractional integral operator I-alpha from the spaces L-p,L- rho(x)beta (G) to L-q,L- rho(x)-gamma (G), and from the spaces L-1,L- rho(x)beta (G) to the weak spaces WLq, rho(x)-gamma (G) by using the Stein-Weiss inequalities. In the limiting case p = Q/alpha-beta-gamma, we prove that the modified fractional integral operator (I) over tilde (alpha) is bounded from the space L-p,L- rho(x)beta (G) to the weighted bounded mean oscillation (BMO) space BMO (rho(x)-gamma) (G), where Q is the homogeneous dimension of G. As applications of the properties of the fundamental solution of sub-Laplacian L on G, we prove two Sobolev-Stein embedding theorems on weighted Lebesgue and weighted Besov spaces in the Carnot group setting. As another application, we prove the boundedness of I-alpha from the weighted Besov spaces B-p theta,beta(s) (G) to B-q theta, - gamma(s)(G).
Anahtar Kelimeler
Fractional integral operator | Stein-Weiss inequality | Stratified groups | Weighted BMO spaces | Weighted Lebesgue spaces
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı COMPLEX VARIABLES AND ELLIPTIC EQUATIONS
Dergi ISSN 1747-6933
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 01-2010
Cilt No 55
Sayı 8
Sayfalar 847 / 863
Doi Numarası 10.1080/17476930902999074