img
BOUNDEDNESS OF THE MAXIMAL, POTENTIAL AND SINGULAR OPERATORS IN THE GENERALIZED VARIABLE EXPONENT MORREY SPACES   
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Javanshir J. Hasanov
Stefan G. Samko
Özet
We consider generalized Morrey spaces M-P(.),M-omega(Omega) with variable exponent p(x) and a general function omega(x, r) defining the Money-type norm. In case of bounded sets Omega subset of R-n we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sob lev-Adams type M-p(.),M-omega(Omega)-> M-q(.),M-omega(Omega)-theorem for the potential operators I-alpha(.), also of variable order. The conditions for the boundedness are given it terms of Zygmund-type integral inequalities on omega(x, r), which do not assume any assumption on monotonicity of omega(x, r) in r
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı MATHEMATICA SCANDINAVICA
Dergi ISSN 0025-5521
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 01-2010
Cilt No 107
Sayı 2
Sayfalar 285 / 304
Doi Numarası 10.7146/math.scand.a-15156