Yazarlar (3) |
![]() Kırşehir Ahi Evran Üniversitesi |
![]() Ankara Üniversitesi, Türkiye |
![]() Dumlupinar Üniversitesi, Türkiye |
Özet |
In this paper, we study the generalized anisotropic potential integral K(alpha,gamma) circle times f and anisotropic fractional integral I(Omega,alpha,gamma) f with rough kernels, associated with the Laplace-Bessel differential operator Delta(B). We prove that the operator f -> K(alpha,gamma) circle times f is bounded from the Lorentz spaces L(p,r,gamma) (R(k)(n),(+)) to L(q,s,gamma) (R(k)(n),(+)) for 1 <= p < q <= infinity, 1 <= r <= s <= infinity. As a result of this, we get the necessary and sufficient conditions for the boundedness of I(Omega,alpha,gamma) from the Lorentz spaces L(p,s,gamma) (R(k)(n),(+)) to L(q,r,gamma) (R(k)(n),(+)), 1 < p < q < infinity, 1 <= r <= s <= 8 and from L(1,r,gamma) (R(k)(n),(+)) to L(q,infinity,gamma) (R(k)(n),(+)) = WL(q,gamma) (R(k)(n),(+)), 1 < q < infinity, 1 <= r <= 8. Furthermore, for the limiting case p = Q/alpha, we give an analogue of Adams' theorem on the exponential integrability of I(Omega,alpha,gamma) in L(Q/alpha,gamma) (R(k)(n),(+)). |
Anahtar Kelimeler |
Generalized anisotropic potential integral | Laplace-bessel differential operator | Lorentz spaces | Rough anisotropic fractional integral |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
Dergi Adı | INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS |
Dergi ISSN | 1065-2469 Wos Dergi Scopus Dergi |
Dergi Grubu | Q3 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2011 |
Cilt No | 22 |
Sayı | 12 |
Sayfalar | 919 / 935 |
Doi Numarası | 10.1080/10652469.2010.548334 |