Yazarlar |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
Javanshir J. Hasanov
|
Yusuf Zeren
|
Özet |
We prove that the fractional maximal operator M-alpha and the Riesz potential operator I-alpha, 0 < alpha < n are bounded from the modified Morrey space (L) over tilde (1,lambda) (R-n) to the weak modified Morrey space W (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1 - 1/q <= alpha/(n - lambda) and from (L) over tilde (p,lambda) (R-n) to (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1/p - 1/q <= alpha/(n - lambda). As applications, we establish the boundedness of some Schodinger type operators on modified Morrey spaces related to certain nonnegative potentials belonging to the reverse Holder class. As an another application, we prove the boundedness of various operators on modified Morrey spaces which are estimated by Riesz potentials. |
Anahtar Kelimeler |
Fractional maximal function | Hardy-Littlewood-Sobolev inequality | Modified Morrey space | Riesz potential | Schödinger type operator |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | JOURNAL OF MATHEMATICAL INEQUALITIES |
Dergi ISSN | 1846-579X |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 12-2011 |
Cilt No | 5 |
Sayı | 4 |
Sayfalar | 491 / 506 |
Doi Numarası | 10.7153/jmi-05-43 |