img
NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE RIESZ POTENTIAL IN MODIFIED MORREY SPACES   
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Javanshir J. Hasanov
Yusuf Zeren
Özet
We prove that the fractional maximal operator M-alpha and the Riesz potential operator I-alpha, 0 < alpha < n are bounded from the modified Morrey space (L) over tilde (1,lambda) (R-n) to the weak modified Morrey space W (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1 - 1/q <= alpha/(n - lambda) and from (L) over tilde (p,lambda) (R-n) to (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1/p - 1/q <= alpha/(n - lambda).
As applications, we establish the boundedness of some Schodinger type operators on modified Morrey spaces related to certain nonnegative potentials belonging to the reverse Holder class. As an another application, we prove the boundedness of various operators on modified Morrey spaces which are estimated by Riesz potentials.
Anahtar Kelimeler
Fractional maximal function | Hardy-Littlewood-Sobolev inequality | Modified Morrey space | Riesz potential | Schödinger type operator
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF MATHEMATICAL INEQUALITIES
Dergi ISSN 1846-579X
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 12-2011
Cilt No 5
Sayı 4
Sayfalar 491 / 506
Doi Numarası 10.7153/jmi-05-43