img
Riesz potential on the Heisenberg group and modified Morrey spaces   
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Yagub Y. Mammadov
Özet
In this paper we study the fractional maximal operator M-alpha, 0 <= alpha < Q and the Riesz potential operator F-alpha L 0 < alpha < Q on the Heisenberg group in the modified Morrey spaces L-p,L-lambda(H-n), where Q = 2n + 2 is the homogeneous dimension on H-n. We prove that the operators M-alpha and F-alpha are bounded from the modified Morrey space <(L)over tilde>(1,lambda)(H-n) to the weak modified Morrey space W (L) over tilde (q,lambda) (H-n) if and only if, alpha/Q <= 1 - 1/q <= alpha/(Q - lambda) and from (L) over tilde (p,lambda)(H-n) to (L) over tilde (q,lambda)(H-n) if and only if, alpha/Q <= 1/p - 1/q <= alpha/(Q - lambda).
In the limiting case Q-lambda/alpha <= p <= Q/alpha we prove that the operator M-alpha is bounded from (L) over tilde (p,lambda)(H-n) to L-infinity (H-n) and the modified fractional integral operator (I) over tilde (alpha) is bounded from (L) over tilde (p,lambda)(H-n) to BMO(H-n).
As applications of the properties of the fundamental solution of sub-Laplacian L on H-n, we prove two Sobolev-Stein embedding theorems on modified Morrey and Besov-modified Morrey spaces in the Heisenberg group setting. As an another application, we prove the boundedness of F alpha, from the Besov-modified Morrey spaces B (L) over tilde (s)(p theta),(lambda)(H-n) to B (L) over tilde (s)(q theta),lambda(H-n).
Anahtar Kelimeler
BMO space | Fractional integral | Fractional maximal function | Heisenberg group | Modified Morrey space | Riesz potential
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA
Dergi ISSN 1224-1784
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 01-2012
Cilt No 20
Sayı 1
Sayfalar 189 / 212
Doi Numarası 10.2478/v10309-012-0013-8
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 3
SCOPUS 3
Riesz potential on the Heisenberg group and modified Morrey spaces

Paylaş