Yazarlar |
C. Aykol
|
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
A. Serbetci
|
Özet |
In this paper we prove the O'Neil inequality for the Hankel (Fourier-Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz-Hankel potential operator I-beta,I-alpha associated with the Hankel transform in the Lorentz-Hankel spaces L-p,(r),(alpha)(0, infinity). We establish necessary and sufficient conditions for the boundedness of I-beta,I-alpha from the Lorentz-Hankel spaces L-p,L-r,L-alpha(0, infinity), 1 < p < q < infinity, 1 <= r <= s < infinity. We obtain boundedness conditions in the limiting cases p = 1 and p = (2 alpha + 2)/beta. Finally, for the limiting case p = (2 alpha + 2)/beta we prove an analogue of the Adams theorem on exponential integrability of I-beta,I-alpha in L(2 alpha+2)/beta,r,alpha(0, infinity). |
Anahtar Kelimeler |
Bessel differential operator | Hankel transform | alpha-rearrangement | LorentzHankel spaces | Riesz-Hankel potential |
Makale Türü | Özgün Makale |
Makale Alt Türü | ESCI dergilerinde yayımlanan tam makale |
Dergi Adı | EURASIAN MATHEMATICAL JOURNAL |
Dergi ISSN | 2077-9879 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2013 |
Cilt No | 4 |
Sayı | 3 |
Sayfalar | 8 / 19 |