img
THE O'NEIL INEQUALITY FOR THE HANKEL CONVOLUTION OPERATOR AND SOME APPLICATIONS  
Yazarlar
C. Aykol
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
A. Serbetci
Özet
In this paper we prove the O'Neil inequality for the Hankel (Fourier-Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz-Hankel potential operator I-beta,I-alpha associated with the Hankel transform in the Lorentz-Hankel spaces L-p,(r),(alpha)(0, infinity). We establish necessary and sufficient conditions for the boundedness of I-beta,I-alpha from the Lorentz-Hankel spaces L-p,L-r,L-alpha(0, infinity), 1 < p < q < infinity, 1 <= r <= s < infinity. We obtain boundedness conditions in the limiting cases p = 1 and p = (2 alpha + 2)/beta. Finally, for the limiting case p = (2 alpha + 2)/beta we prove an analogue of the Adams theorem on exponential integrability of I-beta,I-alpha in L(2 alpha+2)/beta,r,alpha(0, infinity).
Anahtar Kelimeler
Bessel differential operator | Hankel transform | alpha-rearrangement | LorentzHankel spaces | Riesz-Hankel potential
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı EURASIAN MATHEMATICAL JOURNAL
Dergi ISSN 2077-9879
Makale Dili İngilizce
Basım Tarihi 01-2013
Cilt No 4
Sayı 3
Sayfalar 8 / 19
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 2

Paylaş