| Yazarlar (3) | 
|  C. Aykol | 
|  Prof. Dr. Vagıf GULIYEV | 
|  A. Serbetci | 
| Özet | 
| In this paper we prove the O'Neil inequality for the Hankel (Fourier-Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz-Hankel potential operator I-beta,I-alpha associated with the Hankel transform in the Lorentz-Hankel spaces L-p,(r),(alpha)(0, infinity). We establish necessary and sufficient conditions for the boundedness of I-beta,I-alpha from the Lorentz-Hankel spaces L-p,L-r,L-alpha(0, infinity), 1 < p < q < infinity, 1 <= r <= s < infinity. We obtain boundedness conditions in the limiting cases p = 1 and p = (2 alpha + 2)/beta. Finally, for the limiting case p = (2 alpha + 2)/beta we prove an analogue of the Adams theorem on exponential integrability of I-beta,I-alpha in L(2 alpha+2)/beta,r,alpha(0, infinity). | 
| Anahtar Kelimeler | 
| Bessel differential operator | Hankel transform | alpha-rearrangement | LorentzHankel spaces | Riesz-Hankel potential | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | ESCI dergilerinde yayınlanan tam makale | 
| Dergi Adı | EURASIAN MATHEMATICAL JOURNAL | 
| Dergi ISSN | 2077-9879 Wos Dergi Scopus Dergi | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 01-2013 | 
| Cilt No | 4 | 
| Sayı | 3 | 
| Sayfalar | 8 / 19 |