img
PARABOLIC FRACTIONAL INTEGRAL OPERATORS WITH ROUGH KERNEL IN PARABOLIC GENERALIZED MORREY SPACES  
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Aydin S. Balakishiyev
Özet
Let Omega is an element of L-s(Sn-1) with 1 < s < infinity be a At homogeneous of degree zero, I-Omega,alpha(P) be the parabolic fractional integral operators with rough kernel, where 0 < alpha < gamma and gamma = trP is the homogeneous dimension on R-n. We study the continuity properties of I-Omega,alpha(P) on the parabolic generalized Morrey spaces M-p,M-phi,M-P We find the conditions on the pair (phi(1), phi(2)) which ensures the boundedness of the operator I-Omega,alpha(P) from one parabolic generalized Morrey space M-p,M-phi 1,M-P (R-n) to another M-p,M-phi 2,M-P (R-n), 1 < p < q < infinity, 1/p - 1/q = alpha/gamma, and from the space M-p,M-phi 1,M-P (R-n) to the weak space W M-p,M-phi 2,M-P (R-n), 1 <= q < infinity, 1 - 1/q = alpha/gamma.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS
Dergi ISSN 2409-4986
Makale Dili İngilizce
Basım Tarihi 01-2013
Cilt No 38
Sayı 46
Sayfalar 47 / 56
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 1

Paylaş