Yazarlar |
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
Aydin S. Balakishiyev
|
Özet |
Let Omega is an element of L-s(Sn-1) with 1 < s < infinity be a At homogeneous of degree zero, I-Omega,alpha(P) be the parabolic fractional integral operators with rough kernel, where 0 < alpha < gamma and gamma = trP is the homogeneous dimension on R-n. We study the continuity properties of I-Omega,alpha(P) on the parabolic generalized Morrey spaces M-p,M-phi,M-P We find the conditions on the pair (phi(1), phi(2)) which ensures the boundedness of the operator I-Omega,alpha(P) from one parabolic generalized Morrey space M-p,M-phi 1,M-P (R-n) to another M-p,M-phi 2,M-P (R-n), 1 < p < q < infinity, 1/p - 1/q = alpha/gamma, and from the space M-p,M-phi 1,M-P (R-n) to the weak space W M-p,M-phi 2,M-P (R-n), 1 <= q < infinity, 1 - 1/q = alpha/gamma. |
Anahtar Kelimeler |
Makale Türü | Özgün Makale |
Makale Alt Türü | ESCI dergilerinde yayımlanan tam makale |
Dergi Adı | PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS |
Dergi ISSN | 2409-4986 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2013 |
Cilt No | 38 |
Sayı | 46 |
Sayfalar | 47 / 56 |