Yazarlar |
Canay Aykol
|
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
Ayhan Serbetci
|
Özet |
In this paper we define a new class of functions called local Morrey-Lorentz spaces M-p,q;lambda(loc)(R-n), 0 < p,q <= infinity and 0 <= lambda <= 1. These spaces generalize Lorentz spaces such that M-p,q;0(loc) (R-n) = L-p,L-q(R-n). We show that in the case lambda < 0 or lambda > 1, the space M-p,q;lambda(loc) (R-n) is trivial, and in the limiting case lambda = 1, the space M-p,q;1(loc) (R-n) is the classical Lorentz space Lambda (infinity,t1/p - 1/q) (R-n). We show that for 0 < q <= p < infinity and 0 < lambda <= q/p, the local Morrey-Lorentz spaces M-p,q;lambda(loc) (R-n) are equal to weak Lebesgue spaces WL1/p-lambda/q (R-n). We get an embedding between local Morrey-Lorentz spaces and Lorentz-Morrey spaces. Furthermore, we obtain the boundedness of the maximal operator in the local Morrey-Lorentz spaces. |
Anahtar Kelimeler |
Local Morrey-Lorentz spaces | Lorentz spaces | Lorentz-Morrey spaces | Maximal operator | Morrey spaces |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | JOURNAL OF INEQUALITIES AND APPLICATIONS |
Dergi ISSN | 1029-242X |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2013 |
Cilt No | 2013 |
Sayı | 1 |
Doi Numarası | 10.1186/1029-242X-2013-346 |
Atıf Sayıları | |
WoS | 12 |
SCOPUS | 13 |
Google Scholar | 22 |