img
Boundedness of the fractional maximal operator in generalized Morrey space on the Heisenberg group   
Yazarlar
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Yagub Y. Mammadov
Özet
In this paper we study the fractional maximal operator M (alpha) , 0 a parts per thousand currency sign alpha < Q on the Heisenberg group a"i (n) in the generalized Morrey spaces M (p, I center dot)(a"i (n) ), where Q = 2n + 2 is the homogeneous dimension of a"i (n) . We find the conditions on the pair (I center dot (1), I center dot (2)) which ensures the boundedness of the operator M (alpha) from one generalized Morrey space M (p, I center dot 1)(a"i (n) ) to another M (q, I center dot 2)(a"i (n) ), 1 < p < q < a, 1/p-1/q = alpha/Q, and from the space M (1, I center dot 1)(a"i (n) ) to the weak space WM (q, I center dot 2)(a"i (n) ), 1 < q < a, 1 - 1/q = alpha/Q. We also find conditions on the phi which ensure the Adams type boundedness of M (alpha) from to for 1 < p < q < a and from M (1, I center dot)(a"i (n) ) to for 1 < q < a.
As applications we establish the boundedness of some Schrodinger type operators on generalized Morrey spaces related to certain nonnegative potentials V belonging to the reverse Holder class B (a)(" (n) ).
Anahtar Kelimeler
fractional maximal function | generalized Morrey space | Heisenberg group | Schrödinger operator
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS
Dergi ISSN 0019-5588
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 04-2013
Cilt No 44
Sayı 2
Sayfalar 185 / 202
Doi Numarası 10.1007/s13226-013-0010-2