Yazarlar |
Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
Javanshir J. Hasanov
|
Stefan G. Samko
|
Özet |
We consider local "complementary" generalized Morrey spaces M-c({x0})p(.).omega (Omega) in which the p-means of function are controlled over Omega \ B(x(0), r) instead of B(x(0), r), where Omega subset of R-n is a bounded open set, p(x) is a variable exponent, and no monotonicity type condition is imposed onto the function omega(r) defining the "complementary" Morrey-type norm. In the case where omega is a power function, we reveal the relation of these spaces to weighted Lebesgue spaces. In the general case we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev type M-c({x0})p(.).omega (Omega) -> M-c({x0})p(.).omega (Omega)-theorem for the potential operators I-alpha(.), also of variable order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type integral inequalities-on omega(r), which do not assume any assumption on monotonicity of omega(r). |
Anahtar Kelimeler |
Fractional maximal operator | Generalized Morrey space | Local "complementary" Morrey spaces | Maximal operator | Riesz potential, singular integral operators, weighted spaces |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Dergi ISSN | 0022-247X |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 05-2013 |
Cilt No | 401 |
Sayı | 1 |
Sayfalar | 72 / 84 |
Doi Numarası | 10.1016/j.jmaa.2012.03.041 |