M-c({x0})p(.).omega (Omega)-theorem for the potential operators I-alpha(.), also of variable order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type integral inequalities-on omega(r), which do not assume any assumption on monotonicity of omega(r)." />
img
Maximal, potential and singular operators in the local "complementary" variable exponent Morrey type spaces    
Yazarlar
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Javanshir J. Hasanov
Stefan G. Samko
Özet
We consider local "complementary" generalized Morrey spaces M-c({x0})p(.).omega (Omega) in which the p-means of function are controlled over Omega \ B(x(0), r) instead of B(x(0), r), where Omega subset of R-n is a bounded open set, p(x) is a variable exponent, and no monotonicity type condition is imposed onto the function omega(r) defining the "complementary" Morrey-type norm. In the case where omega is a power function, we reveal the relation of these spaces to weighted Lebesgue spaces. In the general case we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev type M-c({x0})p(.).omega (Omega) -> M-c({x0})p(.).omega (Omega)-theorem for the potential operators I-alpha(.), also of variable order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type integral inequalities-on omega(r), which do not assume any assumption on monotonicity of omega(r).
Anahtar Kelimeler
Fractional maximal operator | Generalized Morrey space | Local "complementary" Morrey spaces | Maximal operator | Riesz potential, singular integral operators, weighted spaces
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Dergi ISSN 0022-247X
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 05-2013
Cilt No 401
Sayı 1
Sayfalar 72 / 84
Doi Numarası 10.1016/j.jmaa.2012.03.041