 
  
  
  
		| Yazarlar (3) | 
|  Prof. Dr. Vagıf GULIYEV | 
|  Javanshir J. Hasanov Institute Of Mathematics And Mechanics Ministry Of Science And Education Republic Of Azerbaijan, Azerbaycan | 
|  Stefan G. Samko Universidade Do Algarve, Portekiz | 
| Özet | 
| We consider local "complementary" generalized Morrey spaces M-c({x0})p(.).omega (Omega) in which the p-means of function are controlled over Omega \ B(x(0), r) instead of B(x(0), r), where Omega subset of R-n is a bounded open set, p(x) is a variable exponent, and no monotonicity type condition is imposed onto the function omega(r) defining the "complementary" Morrey-type norm. In the case where omega is a power function, we reveal the relation of these spaces to weighted Lebesgue spaces. In the general case we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev type M-c({x0})p(.).omega (Omega) -> M-c({x0})p(.).omega (Omega)-theorem for the potential operators I-alpha(.), also of variable order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type integral inequalities-on omega(r), which do not assume any assumption on monotonicity of omega(r). | 
| Anahtar Kelimeler | 
| Fractional maximal operator | Generalized Morrey space | Local "complementary" Morrey spaces | Maximal operator | Riesz potential, singular integral operators, weighted spaces | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale | 
| Dergi Adı | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 
| Dergi ISSN | 0022-247X Wos Dergi Scopus Dergi | 
| Dergi Grubu | Q1 | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 05-2013 | 
| Cilt No | 401 | 
| Sayı | 1 | 
| Sayfalar | 72 / 84 | 
| Doi Numarası | 10.1016/j.jmaa.2012.03.041 |