img
img
TWO-WEIGHTED INEQUALITY FOR p-ADMISSIBLE Bk,n-SINGULAR OPERATORS IN WEIGHTED LEBESGUE SPACES  
Yazarlar (3)
Prof. Dr. Vagıf GULIYEV Prof. Dr. Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Fatai A. Isayev
Zaman V. Safarov
Devamını Göster
Özet
In this paper, we study the boundedness of p-admissible singular operators, associated with the Laplace-Bessel differential operator Bk,n =Sigma(n)(i-1)partial derivative(2)/partial derivative x(i)(2) + Sigma(n)(i-1)gamma(j)/x(j)partial derivative/partial derivative x(i) (p-admissible B-k,(n)-singular operators) on a 3=1 xj weighted Lebesgue spaces Lp,omega,gamma(R(k)(,)n) including their weak versions. These conditions are satisfied by most of the operators in harmonic analysis, such as the B-k,(n) maximal operator, B-k,(n) singular integral operators and so on. Sufficient conditions on weighted functions w and wi are given so that p-admissible B-k,(n) singular operators are bounded from L-p,L-omega,L-gamma( R-k(n),+) to L-p,L-omega,L-gamma( R-k(n),+) for 1 < p < infinity and weak p-admissible Bk,Th singular operators are bounded from L-p,L-omega,L-gamma( R-k(n),+) to L-p,L-omega,L-gamma( R-k(n),+) for 1 < p < infinity.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayımlanan tam makale
Dergi Adı PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS
Dergi ISSN 2409-4986
Makale Dili İngilizce
Basım Tarihi 01-2014
Cilt No 40
Sayı 1
Sayfalar 122 / 146
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş