img
The Lp1r1 x Lp2r2 x *** x Lpkrk boundedness of rough multilinear fractional integral operators in the Lorentz spaces   
Yazarlar
Vagif S. Guliyev
Ismail Ekincioglu
 Vagıf GULIYEV Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi
Özet
In this paper, we prove the O'Neil inequality for the k-linear convolution operator in the Lorentz spaces. As an application, we obtain the necessary and sufficient conditions on the parameters for the boundedness of the k-sublinear fractional maximal operator M-Omega,M-alpha(f) and the k-linear fractional integral operator /(Omega,alpha)(f) with rough kernels from the spaces L-p1r1 x L-p2r2 x center dot center dot center dot x L-pkrk to L-qs, where n/(n + alpha) <= p < q < infinity, 0 < r <= s < infinity, p is the harmonic mean of p(1), p(2),..,p(k) > 1 and r is the harmonic mean of r(1),r(2),...,r(k) >0.
Anahtar Kelimeler
harmonic mean | k-linear convolution | k-linear fractional integral | k-sublinear fractional maximal function | Lorentz space | O’Neil inequality | rearrangement estimate
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı JOURNAL OF INEQUALITIES AND APPLICATIONS
Dergi ISSN 1029-242X
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 02-2015
Cilt No 2015
Sayı 1
Sayfalar 1 / 15
Doi Numarası 10.1186/s13660-015-0584-9