Yazarlar |
Vagif S. Guliyev
|
Ismail Ekincioglu
|
Vagıf GULIYEV
Kırşehir Ahi Evran Üniversitesi |
Özet |
In this paper, we prove the O'Neil inequality for the k-linear convolution operator in the Lorentz spaces. As an application, we obtain the necessary and sufficient conditions on the parameters for the boundedness of the k-sublinear fractional maximal operator M-Omega,M-alpha(f) and the k-linear fractional integral operator /(Omega,alpha)(f) with rough kernels from the spaces L-p1r1 x L-p2r2 x center dot center dot center dot x L-pkrk to L-qs, where n/(n + alpha) <= p < q < infinity, 0 < r <= s < infinity, p is the harmonic mean of p(1), p(2),..,p(k) > 1 and r is the harmonic mean of r(1),r(2),...,r(k) >0. |
Anahtar Kelimeler |
harmonic mean | k-linear convolution | k-linear fractional integral | k-sublinear fractional maximal function | Lorentz space | O’Neil inequality | rearrangement estimate |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | JOURNAL OF INEQUALITIES AND APPLICATIONS |
Dergi ISSN | 1029-242X |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 02-2015 |
Cilt No | 2015 |
Sayı | 1 |
Sayfalar | 1 / 15 |
Doi Numarası | 10.1186/s13660-015-0584-9 |