| Yazarlar (3) |
|
Institute Of Mathematics And Mechanics Ministry Of Science And Education Republic Of Azerbaijan, Azerbaycan |
|
Dumlupinar Üniversitesi, Türkiye |
Prof. Dr. Vagıf GULIYEV
Institute Of Mathematics And Mechanics Ministry Of Science And Education Republic Of Azerbaijan, Azerbaycan |
| Özet |
| In this paper, we prove the O'Neil inequality for the k-linear convolution operator in the Lorentz spaces. As an application, we obtain the necessary and sufficient conditions on the parameters for the boundedness of the k-sublinear fractional maximal operator M-Omega,M-alpha(f) and the k-linear fractional integral operator /(Omega,alpha)(f) with rough kernels from the spaces L-p1r1 x L-p2r2 x center dot center dot center dot x L-pkrk to L-qs, where n/(n + alpha) <= p < q < infinity, 0 < r <= s < infinity, p is the harmonic mean of p(1), p(2),..,p(k) > 1 and r is the harmonic mean of r(1),r(2),...,r(k) >0. |
| Anahtar Kelimeler |
| harmonic mean | k-linear convolution | k-linear fractional integral | k-sublinear fractional maximal function | Lorentz space | O’Neil inequality | rearrangement estimate |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | JOURNAL OF INEQUALITIES AND APPLICATIONS |
| Dergi ISSN | 1029-242X Wos Dergi Scopus Dergi |
| Dergi Grubu | Q1 |
| Makale Dili | İngilizce |
| Basım Tarihi | 02-2015 |
| Cilt No | 2015 |
| Sayı | 1 |
| Sayfalar | 1 / 15 |
| Doi Numarası | 10.1186/s13660-015-0584-9 |