 
  
  
		| Yazarlar (3) | 
|  Vagif S. Guliyev Institute Of Mathematics And Mechanics Ministry Of Science And Education Republic Of Azerbaijan, Azerbaycan | 
|  Ismail Ekincioglu Dumlupinar Üniversitesi, Türkiye | 
|  Prof. Dr. Vagıf GULIYEV Institute Of Mathematics And Mechanics Ministry Of Science And Education Republic Of Azerbaijan, Azerbaycan | 
| Özet | 
| In this paper, we prove the O'Neil inequality for the k-linear convolution operator in the Lorentz spaces. As an application, we obtain the necessary and sufficient conditions on the parameters for the boundedness of the k-sublinear fractional maximal operator M-Omega,M-alpha(f) and the k-linear fractional integral operator /(Omega,alpha)(f) with rough kernels from the spaces L-p1r1 x L-p2r2 x center dot center dot center dot x L-pkrk to L-qs, where n/(n + alpha) <= p < q < infinity, 0 < r <= s < infinity, p is the harmonic mean of p(1), p(2),..,p(k) > 1 and r is the harmonic mean of r(1),r(2),...,r(k) >0. | 
| Anahtar Kelimeler | 
| harmonic mean | k-linear convolution | k-linear fractional integral | k-sublinear fractional maximal function | Lorentz space | O’Neil inequality | rearrangement estimate | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale | 
| Dergi Adı | JOURNAL OF INEQUALITIES AND APPLICATIONS | 
| Dergi ISSN | 1029-242X Wos Dergi Scopus Dergi | 
| Dergi Grubu | Q1 | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 02-2015 | 
| Cilt No | 2015 | 
| Sayı | 1 | 
| Sayfalar | 1 / 15 | 
| Doi Numarası | 10.1186/s13660-015-0584-9 |