 
  
  
		| Yazarlar (2) | 
|  Prof. Dr. Vagıf GULIYEV | 
|  Lubomira G. Softova Università Degli Studi Della Campania Luigi Vanvitelli, İtalya | 
| Özet | 
| We consider the Cauchy Dirichlet problem for linear divergence form parabolic operators in bounded Reifenberg-flat domains. The coefficients are supposed to be only measurable in one of the space variables and small BMO with respect to the others. We obtain boundedness of the Hardy-Littlewood maximal operator in the generalized Morrey spaces W-rho,W-phi, p is an element of (1, infinity) and weight phi satisfying certain supremum condition. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem. (C) 2015 Elsevier Inc. All rights reserved. | 
| Anahtar Kelimeler | 
| BMO | Cauchy-Dirichlet problem | Generalized Morrey spaces | Gradient estimates | Measurable coefficients | Parabolic operators | Primary | Secondary | 
| Makale Türü | Özgün Makale | 
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale | 
| Dergi Adı | JOURNAL OF DIFFERENTIAL EQUATIONS | 
| Dergi ISSN | 0022-0396 Wos Dergi Scopus Dergi | 
| Dergi Grubu | Q1 | 
| Makale Dili | İngilizce | 
| Basım Tarihi | 09-2015 | 
| Cilt No | 259 | 
| Sayı | 6 | 
| Sayfalar | 2368 / 2387 | 
| Doi Numarası | 10.1016/j.jde.2015.03.032 |